Adapting content-based image retrieval techniques for the semantic annotation of medical images

نویسندگان

  • Ashnil Kumar
  • Shane Dyer
  • Jinman Kim
  • ChangYang Li
  • Philip Heng Wai Leong
  • Michael J. Fulham
  • David Dagan Feng
چکیده

The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction, etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic content depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of liver computed tomography (CT) images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

تأملاتی بر نمایه‌ سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه

Purpose: This paper presents various  image indexing techniques and discusses their advantages and limitations.             Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...

متن کامل

A New CBIR Approach for the Annotation of Medical Images

In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. Imaging has occupied a huge role in the management of patients, whether hospitalized or not. This gave birth of the annotation of medical image process. The annotation is intended to image analysis and solve the problem of semantic gap. Physicians and rad...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2016